جريدة الدستور

Revision

And

Rules

First secondary

Mathematics

Prepare by

Mr / Mortagy

Rules sec 1 math

The unit matrix

It is a diagonal matrix in which each element on the main diagonal is the number 1 and it is denoted by I

- $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is a unit matrix of order 2×2 $r = nample : I = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 - $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \text{ is a unit matrix of order } 3 \times 3$

Symmetric and skew symmetric matrices

If A is a square matrix, then:

- A is called a symmetric matrix if and only if A = A^t
- \bullet A is called a skew symmetric matrix if and only if $A = -A^t$
- · If A is a symmetric matrix, we notice that its elements are symmetric about the main diagonal, then $a_{ij} = a_{ji}$
- as in the opposite figure, where
- $a_{21} = a_{12} = d$, $a_{31} = a_{13} = e$, $a_{32} = a_{23} = f$
- . The elements of the main diagonal in the skew symmetric matrix have the numeral zero • and its elements satisfy the relation $a_{ii} = -a_{ii}$
- $\bullet (A + B)^t = A^t + B^t$
- \bullet (AB)^t = B^t A^t

 $\bullet (A^t)^t = A$

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$$

$$\left|A\right| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

If XYZ is a triangle where X(a,b), Y(c,d), Z(e,f), then the area of Δ XYZ is |A|

Where
$$A = \frac{1}{2} \begin{vmatrix} a & b & 1 \\ c & d & 1 \\ e & f & 1 \end{vmatrix}$$

To prove that the three points X (a, b), Y (c, d), Z (e, f) are collinear by using

determinants , then we prove that :
$$\begin{vmatrix} a & b & 1 \\ c & d & 1 \\ e & f & 1 \end{vmatrix} = 0$$

If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the multiplicative inverse of the matrix A which is denoted by the symbol A^{-1} is defined (existed) when the determinant of $A = \Delta \neq 0$, then

$$A^{-1} = \frac{1}{\Delta} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

where
$$AA^{-1} = A^{-1}A = I$$

 $a_1 X + b_1 y = c_1$, $a_2 X + b_2 y = c_2$ by using:

1 By using determinants (Cramer's rule

$$\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}, \quad \Delta_{\chi} = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}, \quad \Delta_{y} = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}, \text{ then } \chi = \frac{\Delta_{\chi}}{\Delta}, \quad y = \frac{\Delta_{y}}{\Delta}$$

By using the multiplicative inverse of the matrix

We write the two equations in the form of the matrix equation: $\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$

i.e. In the form AX = C where A =
$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$$
, X = $\begin{pmatrix} x \\ y \end{pmatrix}$ and C = $\begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$

, then $X = A^{-1}C$ and from that we deduce the values of X and Y

$$\theta^{\, rad} = \frac{\ell}{r}$$
 , then
$$\left\{ \begin{array}{l} \ell = \theta^{rad} \, r \\ r = \frac{\ell}{\theta^{rad}} \end{array} \right.$$

$$\chi^{\circ} = \theta^{\text{rad}} \times \frac{180^{\circ}}{\pi}$$

(to convert from the radian measure to the degree measure)

$$\theta^{\rm rad} = \chi^{\circ} \times \frac{\pi}{180^{\circ}}$$

(to convert from the degree measure to the radian measure)

If the terminal side of the directed angle of measure θ in the standard position intersects the unit circle at the point (X, y), then:

$$\begin{bmatrix} \sin \theta = y \end{bmatrix}$$
, $\begin{bmatrix} \cos \theta = \chi \end{bmatrix}$, $\begin{bmatrix} \tan \theta = \frac{y}{\chi} \end{bmatrix}$

Reciprocals of the trigonometric

$$\sec \theta = \frac{1}{\cos \theta}$$
 , $\csc \theta = \frac{1}{\sin \theta}$

$$\cot \theta = \frac{1}{\tan \theta}$$
 , $\cos \theta = \frac{1}{\sec \theta}$

$$\sin \theta = \frac{1}{\csc \theta}$$
, $\tan \theta = \frac{1}{\cot \theta}$

The relation between θ and $-\theta$

$$\sin(-\theta) = -\sin\theta$$
 , $\cos(-\theta) = \cos\theta$

$$\tan (-\theta) = -\tan \theta$$
, $\csc (-\theta) = -\csc \theta$

$$\sec (-\theta) = \sec \theta$$
 , $\cot (-\theta) = -\cot \theta$

The relation between θ and $(90^{\circ} - \theta)$

•
$$\sin (90^{\circ} - \theta) = \cos \theta$$

•
$$\csc (90^{\circ} - \theta) = \sec \theta$$

•
$$\cos (90^{\circ} - \theta) = \sin \theta$$

•
$$\sec (90^{\circ} - \theta) = \csc \theta$$

•
$$\tan (90^{\circ} - \theta) = \cot \theta$$

•
$$\cot (90^{\circ} - \theta) = \tan \theta$$

$$\sin^2 \theta + \cos^2 \theta = 1$$
, we get: $\sin^2 \theta = 1 - \cos^2 \theta$ and $\cos^2 \theta = 1 - \sin^2 \theta$

$$1 + \tan^2 \theta = \sec^2 \theta$$
, we get: $(\tan^2 \theta = \sec^2 \theta - 1)$ and $(\sec^2 \theta - \tan^2 \theta = 1)$

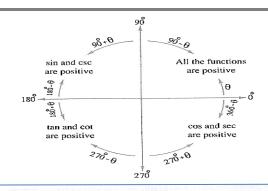
$$\tan^2\theta = \sec^2\theta - 1$$

$$\sec^2\theta - \tan^2\theta = 1$$

$$\cot^2 \theta + 1 = \csc^2 \theta$$
, we get: $\cot^2 \theta = \csc^2 \theta - 1$ and $\csc^2 \theta - \cot^2 \theta = 1$

$$\left[\cot^2\theta = \csc^2\theta - 1\right] a$$

$$\int \csc^2 \theta - \cot^2 \theta = 1$$



The general solution of the trigonometric equation

The general solution of the equation : $\cos \theta = a$ is $\theta = \pm \beta + 2 \pi n$

The general solution of the equation : $\sin \theta = a$ is $\theta = \beta + 2 \pi n$, $\theta = (\pi - \beta) + 2 \pi n$

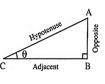
The general solution of the equation : $\tan \theta = a$ is $\theta = \beta + \pi$ n

The general solution of the trigonometric equations of the quadrantal angles

$\sin \theta = 0$	its general solution is : $\theta = \pi n$
$\sin \theta = 1$	its general solution is : $\theta = \frac{\pi}{2} + 2 \pi n$
$\sin \theta = -1$	its general solution is : $\theta = \frac{3 \pi}{2} + 2 \pi n$
$\cos \theta = 0$	its general solution is : $\theta = \frac{\pi}{2} + \pi n$
$\cos \theta = 1$	its general solution is : $\theta = 2 \pi n$

$$\cos \theta = -1$$
 its general solution is: $\theta = \pi + 2\pi n$

$$\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}}$$
$$\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{\text{AB}}{\text{BC}}$$
$$(AC)^2 = (AB)^2 + (BC)^2$$



- The area of the triangle = $\frac{1}{2}$ length of the base × height
- The area of the triangle = $\frac{1}{2}$ the product of the lengths of two sides × sine of the included angle between them
- The area of the triangle = $\sqrt{S(S-AB)(S-BC)(S-AC)}$

where S equals half of the perimeter of the triangle ABC

- The area of the quadrilateral = $\frac{1}{2}$ product of the lengths of its diagonals × sine of the included angle between them = $\frac{1}{2}$ AC × BD × sin θ
- The area of the regular polygon in which the number of its sides is n sides and the length of its side is $x = \frac{1}{4} n x^2 \cot \frac{\pi}{n}$

The circular sector

The area of the circular sector = $\frac{1}{2} \ell_r$ = $\frac{1}{2} \theta^{rad} r^2 = \frac{x^*}{360^\circ} \times \pi r^2$

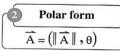
Notice that

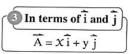
- x° and θ^{rad} are the degree measure and the radian measure of the angle of the sector.
- The perimeter of the sector = $2 r + \ell$

The area of the circular segment = $\frac{1}{2} r^2 (\theta^{rad} - \sin \theta)$

- * If \overrightarrow{OA} is the position vector of the point A(x, y), then
- $\|\overrightarrow{A}\|$ = the length of $\overline{OA} = \sqrt{x^2 + y^2}$
- If $\|\overrightarrow{A}\| = 1$ (the unit) then \overrightarrow{A} is called the unit vector.

Cartesian form $\overrightarrow{A} = (x, y)$

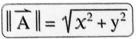


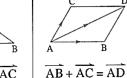


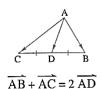
If the position vector of the point A (x, y) is in the polar form $\overrightarrow{OA} = (\|\overrightarrow{OA}\|, \theta)$, then $x = \|\overrightarrow{OA}\| \cos \theta$

$$y = \|\overrightarrow{OA}\| \sin \theta$$

where $\tan \theta = \frac{y}{x}$







$$\overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

$$\operatorname{tr} \widetilde{A} / |\widetilde{B}| \quad \therefore \quad X_1 y_2 - X_2 y_1 = 0$$

If
$$\vec{A} \perp \vec{B}$$
 : $X_1 X_2 + y_1 y_2 = 0$

Division of a line segment

$$\vec{r} = \frac{\vec{m_1} \cdot \vec{r_1} + \vec{m_2} \cdot \vec{r_2}}{\vec{m_1} + \vec{m_2}}$$

$$(X, y) = \left(\frac{m_1 X_1 + m_2 X_2}{m_1 + m_2}, \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2}\right)$$

The straight line L which passes through the point $A = (x_1, y_1)$ and the vector u = (a, b) is a direction vector to it then.

- The vector equation is $\vec{r} = \vec{A} + k \vec{u}$
- The two parametric equations are $x = x_1 + ka$, $y = y_1 + kb$
- The cartesian equation of the straight line is $\sqrt{\frac{y-y_1}{x-x_1}} = m$

If the straight line L passes through the two points (X_1, y_1) and (X_2, y_2) , then its slope (m) = $\frac{y_2 - y_1}{X_2 - X_1}$

If θ is the measure of the positive angle which the straight line L makes with the positive direction of X-axis θ then its slope (m) = $\tan \theta$

If u = (a, b) is a direction vector of the straight line L, then its slope (m) = $\frac{b}{a}$

If the equation of the straight line L is in the form: $a \times b + c = 0$, then its slope (m) = $\frac{-a}{b}$

- ① The slope of X-axis and the slope of any horizontal straight line (parallel to X-axis) are equal to zero.
- The slope of y-axis and the slope of any vertical straight line (parallel to y-axis) are undefined.
- So If L₁ and L₂ are two straight lines of slopes m₁ and m₂ respectively, then:
 - $L_1//L_2 \Leftrightarrow m_1 = m_2$

i.e. The two parallel straight lines have equal slopes and vice versa.

• $L_1 \perp L_2 \Leftrightarrow m_1 \times m_2 = -1$

(unless one of them is parallel to one of the two coordinate axes)

- 4 If the slope of \overrightarrow{AB} = the slope of \overrightarrow{BC} , then the points A, B and C are collinear.
- $\| k \overrightarrow{A} \| = |k| \| \overrightarrow{A} \|$

① The straight line whose slope
$$m = \frac{a}{b}$$
, then its direction vector $\overrightarrow{u} = (b, a)$

The straight line which passes through the two points
$$C(x_1, y_1)$$
 and $D(x_2, y_2)$, then its direction vector $\overrightarrow{u} = \overrightarrow{CD} = \overrightarrow{D} - \overrightarrow{C} = (x_2 - x_1, y_2 - y_1)$

If the direction vector of the straight line L is $\hat{u} = (a, b)$, then the direction vector of the perpendicular straight line to the straight line L is $\hat{N} = (-b, a)$ or (b, -a)

If the two straight lines $L_1: a_1 \times b_1 y + c_1 = 0$ and $L_2: a_2 \times b_2 y + c_2 = 0$ intersect at a point, then the general equation of any straight line passing through the point of intersection of L_1 and L_2 other than L_1 and L_2 is $a_1 \times b_1 y + c_1 + k (a_2 \times b_2 y + c_2) = 0$

Where $k \neq 0$

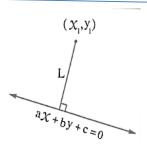
If θ is the measure of the included angle between the two straight lines L_1 and L_2 whose

slopes are m_1 and m_2 , then $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$ where $\theta \in \left[0, \frac{\pi}{2} \right]$

- 1 If the tangent is positive, then we obtain an acute angle.
- 2 If the tangent is zero, then the measure of the included angle = zero
 - , then m $_1$ = m $_2$ and the two straight lines are parallel or coincident.
- 3 If the tangent is undefined, then the measure of the included angle is 90° , then m₁ m₂ = -1 and the two straight lines are orthogonal (perpendicular).
- 4 The measure of the obtuse angle = the measure of the supplementary angle of the acute angle.
- The length of the perpendicular (L) drawn from the point (X_1, y_1) to the straight line whose equation is : aX + by + c = 0 is determined by the relation :

The length of the perpendicular (L) =
$$\frac{|a \chi_1 + b y_1 + c|}{\sqrt{a^2 + b^2}}$$

The length of the perpendicular drawn from the point (X_1, y_1) to X-axis = $|y_1|$ The length of the perpendicular drawn from the point (X_1, y_1) to Y-axis = $|X_1|$



Answer the following:

- - (a) (3, -2)
- (b) (-3,2)
- (c) (6,-4)
- (d) All the previous answers are correct.
- If l and m are the two roots of the equation: $x^2 3x + 1 = 0$
 - , then value of $\begin{vmatrix} \ell^2 m & -\ell^2 \\ m^2 & m \end{vmatrix} = \dots$
 - (a) zero
- (b) 1

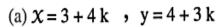
(c)2

(d)3

3 In the opposite figure:

If the equation of the straight line \overrightarrow{AB} is $\frac{x}{6} + \frac{y}{8} = 1$

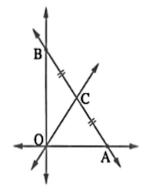
, then parametric equation of the straight line OC is



(b)
$$x = 4 + 3 k$$
, $y = 4 + 4 k$

(c)
$$x = 3 + 3k$$
, $y = 4 + 4k$

(d)
$$x = 4 + 4k$$
, $y = 3 + 3k$

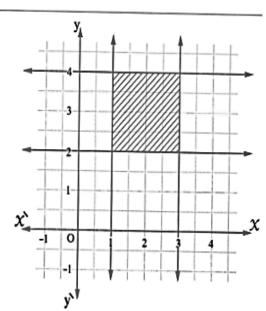


- - (a) 120
- (b) 60

(c) 90

(d) 150

- The shaded region in the opposite graph represents the S.S. of the inequalities
 - (a) X > 1, y > 2
 - (b) 1 < x < 3, 2 < y < 4
 - (c) $1 \le x \le 3$, $2 \le y \le 4$
 - (d) $X + y \ge 3$, $X y \le 7$



 $(\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \dots + \sin^2 90^\circ) = \dots$

- (a) $7\frac{1}{2}$
- (b) $8\frac{1}{2}$ (c) $9\frac{1}{2}$

(d) $10\frac{1}{2}$

If $\overrightarrow{A} = \overrightarrow{i} + 3\overrightarrow{j}$, $\overrightarrow{B} = -10\overrightarrow{i} + \ell\overrightarrow{j}$ are two parallel vectors, then $\ell = \dots$

- (a) 30
- (b) 6

(c) - 6

(d) 3

Length of the drawn perpendicular from the point (1, 1) to the straight line: x + y = 0equalslength unit.

- (a) $\frac{\sqrt{2}}{2}$
- (b)√2
- (c) $2\sqrt{2}$
- (d) 2

Measure of the acute angle between the straight line r = (2, 2) + k(1, 1) and the straight line X = 0 is

- (a) 45°
- (b) 30°
- (c) 135°
- (d) 60°

If $\overrightarrow{A} = 20\overrightarrow{i} - 15\overrightarrow{j}$, $\overrightarrow{B} = 7\overrightarrow{i} + 24\overrightarrow{j}$ and $\overrightarrow{M} = \overrightarrow{A} + \overrightarrow{B}$, $\overrightarrow{N} = \overrightarrow{A} - \overrightarrow{B}$, then

- (a) $\overrightarrow{M} / / \overrightarrow{N}$
- (b) $\overrightarrow{M} \perp \overrightarrow{N}$
- (c) $\overrightarrow{M} = \overrightarrow{N}$
- (d) $\|\overrightarrow{\mathbf{M}}\| = \|\overrightarrow{\mathbf{N}}\|$

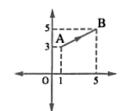
General solution of the equation: $3 \cot \left(\frac{\pi}{2} - \theta\right) = \sqrt{3}$ is

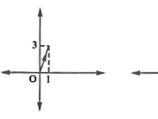
- (a) $\frac{\pi}{6}$ + 2 π n
- (b) $\frac{\pi}{6} + \pi n$ (c) $\frac{7\pi}{6} + 2\pi n$ (d) $\frac{\pi}{3} + \pi n$

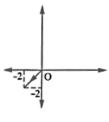
In the opposite graph:

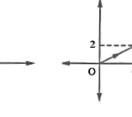
$$A = (1,3), B = (5,5)$$

, then which of the following represent AB









- (a)
- (b)

(c)

(d)

If A is a symmetric matrix, then which of the following can be a rule to deduce the element of matrix A?

- (a) $a_{ij} = 2i j$ (b) $a_{ij} = i + j$ (c) $a_{ij} = i^{j}$
- (d) $a_{ij} = 3i + 2j$

14	If a zero matrix O i	ts order 3×3 , then num	nber of elements of the ma	atrix =
	(a) zero	(b) Ø	(c) 3	(d) 9
15		value of the objective f $2 \times 3 y$, $2 y + x =$	function $P = 3 x + 2 y$ und ≤ 7	ler conditions:
16	$ If A = \begin{vmatrix} \sin 5 \theta \\ \cos 5 \theta \end{vmatrix} $	$\begin{vmatrix} -\cos 5 \theta \\ \sin 5 \theta \end{vmatrix} = \dots$		
	(a) 1	(b) – 1	(c) 5	(d) – 5
17			the length of the diameter tor equalscm.	of its circle is
	(a) 29	(b) 19	(c) 39	(d) 49
18	The area of the regu	lar hexagon in which the	e length of its edge is 8 cm	n. equals cm.2
	(a) $12\sqrt{3}$	(b) 24√3	(c) 96√3	(d) $144\sqrt{3}$
19	In the opposite fig	ure:		
	m (∠ C) = ···········	· to the nearest degree.		Scm.
	(a) 30		(b) 35	
	(c) 36		(d) 45	B 7cm. C
20	All of the following	are unit vectors except		
	(a) (1,0)	(b) (0 ,-1)	(c) (1 ,1)	(d) (0.6 , 0.8)
21	In \triangle ABC : $\overrightarrow{AB} - \overrightarrow{C}$	B + AC =		
	(a) AC	(b) \overrightarrow{CA}	(c) 2 AC	(d) $2\overline{AB}$
22	The direction vector	r of the straight line who	ose parametric equations	are $X + 3 = 2 \text{ k}$, $y = 5$
	(a) (2 ,0)	(b) (2,-3)	(c) (2,3)	(d) (2,5)
23	If C∈AB , 3 AI	$\overrightarrow{B} = 5 \overrightarrow{CB}$, then C divid	es BA by the ratio	····· internally.
	(a) 2:3	(b) 3:2	(c) 3:5	(d) 5:3

The measure of the angle between the two straight lines 3 $x = 5$, $y = 3$ is
--

- (a) 30°
- (b) 45°
- (c) 60°

(d) 90°

If
$$\overrightarrow{AB} = 2\overrightarrow{i} + \overrightarrow{j}$$
, B (3, -1), then the point of A is

- (a) (1, -2)
- (b) (-2,1)
- (c)(2,1)
- (d) (1,2)

If
$$\begin{vmatrix} x & 12 \\ 3 & x \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 10 & 5 \end{vmatrix}$$
, then $x = \dots$

- (b) 5

(c) 6

 $(d) \pm 6$

If
$$A \times \begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix} = I$$
, then $A = \dots$

- (a) $\begin{pmatrix} -1 & 3 \\ -1 & 2 \end{pmatrix}$ (b) $\begin{pmatrix} 2 & -1 \\ 3 & -1 \end{pmatrix}$ (c) $\begin{pmatrix} -1 & 1 \\ -2 & 3 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix}$

If
$$\overrightarrow{A} = -2\overrightarrow{i} - 2\overrightarrow{j}$$
, then the polar form of \overrightarrow{A} is

- (a) $\left(2\sqrt{2}, \frac{\pi}{4}\right)$ (b) $\left(2\sqrt{2}, \frac{3\pi}{4}\right)$ (c) $\left(2\sqrt{2}, \frac{5\pi}{4}\right)$ (d) $\left(2\sqrt{2}, \frac{7\pi}{4}\right)$

If
$$\overrightarrow{A} = 3\overrightarrow{i} - 4\overrightarrow{j}$$
, $\overrightarrow{B} = \overrightarrow{j}$, $\overrightarrow{C} = (5, \frac{\pi}{18})$, find the value of : $\|\overrightarrow{A}\| + \|\overrightarrow{B}\| + \|\overrightarrow{C}\|$

- Find the area of circular segment whose chord length is 18 cm. and the radius length of its 30 circle is 18 cm. to the nearest cm2
- The solution set of the inequality: $x + 5 \le 3 \times 1 < 2 \times 2$ in \mathbb{R} is 31
 - (a) $\mathbb{R} [1, 2]$
- (b)]1 ,2]
- (c) Ø

- (d) $\{1,2\}$
- Find the different forms of the equation of the straight line which passes through the point 32 (1,3) and is perpendicular to the straight line: r = (2,5) + k(-2,1)
 - Find the area of the triangle whose vertices are A (2,4), B (-2,4), C (0,-2)

Answer

1 (d) 2 (e) 3 (e) 4 (a)

5 (c) 6 (c) 7 (a) 8 (b)

9 (a) 10 (b) 11 (b) 12 (d)

13 (b) 14 (d)

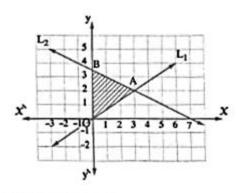
15

 $x \ge 0$, $y \ge 0$ represented by $\overrightarrow{Ox} \bigcup \overrightarrow{Oy} \bigcup$ the first quadrant

 $L_1: 2 \times = 3$ y passes through (0, 0) and (3, 2)

 $L_2: 2y + X = 7$ passes through (0 , 3.5) and (7 , 0)

.. The solution set is the shaded region AOB



 $[P]_0 = 3(0) + 2(0) = 0$

 $,[P]_A = 3(3) + 2(2) = 13$

 $P_{n} = 3(0) + 2(3.5) = 7$

... The maximum value of the objective function = 13 at the point (3, 2)

16 (a) 17 (a) 18 (c) 19 (c)

20 **(c)**

21 **(c)**

22 (a)

23 **(b)**

24 **(d)**

25 **(a)**

26

27 **(d)**

29

28

 $\therefore \overrightarrow{A} = 3\overrightarrow{i} - 4\overrightarrow{j}$

 $\| \vec{A} \| = \sqrt{(3)^2 + (4)^2} = 5$

 $\cdot \cdot \cdot \overrightarrow{B} = \overrightarrow{j}$

 $\| \hat{B} \| = \sqrt{(0)^2 + (1)^2} = 1$

 $\cdot : \overrightarrow{C} = (5, \frac{\pi}{18})$

: |C|=5

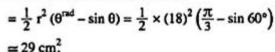
 $\|\vec{A}\| + \|\vec{B}\| + \|\vec{C}\| = 11$

30

In Δ ABM:

∴ m (∠ AMB) = 60°

.. The area of the circular segment



31 (c)

32

- : The direction vector of the given line is (-2, 1)
- .. The direction vector of the required line is (1,2)
- \therefore The vector equation: $\mathbf{r} = (1, 3) + k(1, 2)$

i.e. (X, y) = (1, 3) + k(1, 2)

The parametric equations are x = 1 + k, y = 3 + 2k

The cartesian equation $\frac{y-3}{x-1} = \frac{2}{1}$

- $\therefore 2X-2=y-3$
- \therefore The general form : 2 x y + 1 = 0

33

$$A = \frac{1}{2} \begin{vmatrix} 2 & 4 & 1 \\ -2 & 4 & 1 \\ 0 & -2 & 1 \end{vmatrix} = 12$$

:. The area of \triangle ABC = |12| = 12 square units.